Neural Network Control
نویسنده
چکیده
This thesis addresses two neural network based control systems. The first is a neural network based predictive controller. System identification and controller design are discussed. The second is a direct neural network controller. Parameter choice and training methods are discussed. Both controllers are tested on two different plants. Problems regarding implementations are discussed. First the neural network based predictive controller is introduced as an extension to the generalised predictive controller (GPC) to allow control of non-linear plant. The controller design includes the GPC parameters, but prediction is done explicitly by using a neural network model of the plant. System identification is discussed. Two control systems are constructed for two different plants: A coupled tank system and an inverse pendulum. This shows how implementation aspects such as plant excitation during system identification are handled. Limitations of the controller type are discussed and shown on the two implementations. In the second part of this thesis, the direct neural network controller is discussed. An output feedback controller is constructed around a neural network. Controller parameters are determined using system simulations. The control system is applied as a single-step ahead controller to two different plants. One of them is a path-following problem in connection with a reversing trailer truck. This system illustrates an approach with step-wise increasing controller complexity to handle the unstable control object. The second plant is a coupled tank system. Comparison is made with the first controller. Both controllers are shown to work. But for the neural network based predictive controller, construction of a neural network model of high accuracy is critical – especially when long prediction horizons are needed. This limits application to plants that
منابع مشابه
Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature
Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...
متن کاملDesign of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels
In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...
متن کاملSliding Mode with Neural Network Regulator for DFIG Using Two-Level NPWM Strategy
This article presents a sliding mode control (SMC) with artificial neural network (ANN) regulator for the doubly fed induction generator (DFIG) using two-level neural pulse width modulation (NPWM) technique. The proposed control scheme of the DFIG-based wind turbine system (WTS) combines the advantages of SMC control and ANN regulator. The reaching conditions, robustness and stability of the sy...
متن کاملA New Recurrent Fuzzy Neural Network Controller Design for Speed and Exhaust Temperature of a Gas Turbine Power Plant
In this paper, a recurrent fuzzy-neural network (RFNN) controller with neural network identifier in direct control model is designed to control the speed and exhaust temperature of the gas turbine in a combined cycle power plant. Since the turbine operation in combined cycle unit is considered, speed and exhaust temperature of the gas turbine should be simultaneously controlled by fuel command ...
متن کاملAn artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes
One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...
متن کاملNeural Controller Design for Suspension Systems
The main problem of vehicle vibration comes from road roughness. An active suspension systempossesses the ability to reduce acceleration of sprung mass continuously as well as to minimizesuspension deflection, which results in improvement of tire grip with the road surface. Thus, braketraction control and vehicle maneuverability can be improved consider ably .This study developeda new active su...
متن کامل